2020年广西成人高考报考指南

全国统一考试 全程指导 轻松考取学历

您当前的位置:首页 > 复习资料 > 专升本 > 高数一

2018年成考专升本高数必背资料(2)

时间:2018-11-29  来源:中国教育在线  作者:佚名

连续

1、知识范围

(1)函数连续的概念

函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类

(2)函数在一点处连续的性质

连续函数的四则运算、复合函数的连续性、反函数的连续性

(3)闭区间上连续函数的性质

有界性定理、最大值与最小值定理、介值定理(包括零点定理)

(4)初等函数的连续性

2、要求

(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。

(2)会求函数的间断点及确定其类型。

(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。

一元函数微分学

(一)导数与微分

1、知识范围

(1)导数概念

导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系

(2)求导法则与导数的基本公式

导数的四则运算、反函数的导数、导数的基本公式

(3)求导方法

复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数

(4)高阶导数

高阶导数的定义、高阶导数的计算

(5)微分

微分的定义、微分与导数的关系、微分法则一阶微分形式不变性

2、要求

(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简单函数的阶导数。

(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)微分中值定理及导数的应用

1、知识范围

(1)微分中值定理

罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理

(2)洛必达(L‘Hospital)法则

(3)函数增减性的判定法

(4)函数的极值与极值点最大值与最小值

(5)曲线的凹凸性、拐点

(6)曲线的水平渐近线与铅直渐近线

免责声明:由于考试政策等各方面情况的不断调整与变化,请各位考生以招生考试院或招生院校公布的正式信息为准。本网站所提供的信息均来源于网友提供或网络搜集,仅供参考,版权归原作者所有。如您对内容、版权等问题存在异议,请联系本站管理员予以更改或删除。

报考资料,免费领取!上班族学历提升解决方案!

报考资料